
Applying the Cascaded Finite State Grammar Induction Model to
Trading Card Game Corpora

Kristian Mischke, Min Chon, Emily Sullivan, and Nathenael Dereb
Department of Computer Science

The University of Baltimore Maryland County
Baltimore, MD 21250

{mischke1,minc1,emilys2,ndereb1}@umbc.edu

Abstract

The goal of this project is to explore the ef-
fectiveness of an unsupervised Grammar In-
duction algorithm—specifically the Cascaded
Finite State Model—by comparing its results
on English natural language data to rules-text
found on cards from the popular Trading Card
Games: Magic: the Gathering, Yu-Gi-Oh!,
Hearthstone, and Keyforge. Because this lan-
guage is between an explicitly well-defined
syntax like that of mathematical notation and
natural languages (which contain ambiguity),
we should expect better results than in the
original paper. The language model perplex-
ity reports that the model performance on
TCG copra performs better than the Treebank-
3 dataset.

1 Introduction

Grammar Induction is an algorithm that learns the
grammar of a language by observing a set of data
which is known to be valid under that language.
Very little human input is required to build a model
from grammar induction because it can be an un-
supervised algorithm, which enables using large
inputs from other sources. Grammar induction is
also useful in pattern extraction given a large set
of data; we can find patterns in text and establish
a solid foundation for creating or validating new
texts which use the same grammar. One way to
approach grammar induction is the use of context-
free grammars, a set of rules to define all possible
values in a set of data. Context-free grammars help
to organize what we consider significant in our data
and create an outline of a generic statement, which
may potentially assist in identifying or constructing
new statements which fit into the grammar of the
original set of data.

Magic: the Gathering (MTG) and Yu-Gi-Oh!
are popular Trading Card Games (TCGs). TCGs
are most commonly played without the need for a

board or additional pieces. (with the exception of
specific cards which may use the following: dice,
coinflips, little tokens as counters, etc.) All that is
needed to play a basic game is that both players
have a valid deck of cards, an understanding of
the overall rules of the game, and time. What sets
TCGs apart from other games is that each card has
its own unique set of rules which gives the player
some advantage towards winning the game. Fig-
ure 1 shows the layout of an MTG card, but all the
TCGs we are concerned with have the same basic
layout. Every card has a name at the top, and a
body of text deemed the “rules-text”. These rules
tend to follow a specific syntax regarding attack
damage, statistical modifications, timing (e.g. end
of turn), targets (e.g. creature/player), and other
aspects of the game. The rule book of a TCG deter-
mines the base set of rules that outline how players
take their turn and how they may take actions, but
the cards’ individual rules-text augments the book
rules, making the game more dynamic. For ex-

Figure 1: MTG card name and rules-text

ample, in MTG, Rule 704.5a states that “If at any
time a player has 0 or less life, he or she loses the
game.”1. But if a player has the card Lich’s Tomb,
whose rules-text states “You don’t lose the game
for having 0 or less life. Whenever you lose life,
sacrifice a permanent for each 1 life you lost.” then
the book-rules are overridden for that player.

Choosing TCG cards for our analysis of gram-
mar induction is ideal because most card games
have a large number of samples for us to use when
training our model. For example, MTG, the first
TCG, currently has over 20,000 cards, and similar
games like Yu-Gi-Oh! have just under 5000 cards.
Thus, we have enough data from the rules-text sec-
tion of the cards, which we are most concerned
about within our analysis. We often consider train-
ing a Grammar Induction model on unstructured
data like human language. Some of the challenges
of this are the fact that human languages incor-
porate things like ambiguity and complex phrasal
structures. The motivation behind this project is
to see if a Controlled Natural Language like that
of the rules-text from a TCG improves the results
of the model. Since TCG rules-text uses human
language, it will still have some of these challenges,
but it is made for games with well-defined rules
so it is refined in scope and lacks many if not all
of the ambiguities of natural language. Because it
is a Controlled Natural Language, we believe that
while the amount of data is definitely less than an
average natural language dataset, it is large enough
to train with. So we can expect our model to be
well versed with the syntax of TCGs and able to
produce results coherent to this context.

2 Related Work

Prior efforts were made to create grammars from
MTG rules-texts. Some attempts at writing gram-
mars are made by hand and are based on exist-
ing sets of cards. These grammars likely won’t
generalize to all the rules of the game, therefore
it may invalidate some text even though a player
would consider it valid. Magarena2 is an example
of a hand-made grammar using parsing expression
grammar. As a result of being hand-made, many
representations of events in MTG may be long and
specific to the referenced set of cards. Magarena

1https://media.wizards.com/2020/
downloads/MagicCompRules%2020201120.pdf

2https://github.com/magarena/magarena/
blob/master/grammar/mtg.peg

has a non-terminal token named “AbilityRestric-
tion” which repeats the rule “activate this ability
only...” across all of its generations. For example,
the generations continue with texts such as “...if
seven or more cards are in your graveyard” or “...if
you have no cards in hand”, without regard to dif-
ferent variations of the text (e.g. “graveyard” could
be replaced with “battlefield”, and “cards” with
“sorceries”). Our implementation automatically
processes existing cards’ rules-text to determine
the probability of a sequence of word types. The
drawback compared to a hand-made grammar is
the lack of annotation such as part-of-speech or any
human-readable non-terminal tokens named after
aspects of the game.

Some other developments that utilize MTG
cards’ rules-texts include THELEMA by Patsantzis
(2015), a project that creates a graph from sequen-
tial data, such as a grammar from sentences in a
language. THELEMA was initially trained using
the Controlled Natural Language (CNL) found in
MTG, which is the cards’ rules-text. The CNL
is considered akin to natural English, as it can be
spoken and is both easily readable and writable, ac-
companied by syntax specific to MTG. While the
goal of THELEMA is to define an explicit gram-
mar for MTG along with production rules, our goal
is simply to determine if parsing techniques per-
form better on CNL such as MTG rules-text than
on human languages such as English.

3 Proposed Solution

For this project we will be implementing the un-
supervised grammar induction model by Ponvert
et al. (2011). The motivation for this model is to
formulate grammar induction as smaller text chunk-
ing sub-problems. The algorithm uses Probabilistic
Right Linear Grammars (PRLGs) to determine the
most likely constituents in a given sentence. It then
combines the constituents as a pseudo-word and
cascades the task to the next level. This repeated
chunk and combine approach can be used to con-
struct a parse tree for a given input sentence. In
their work they used forward-backward expecta-
tion and maximization likelihood estimation with
additive smoothing to estimate the model param-
eters. They chose this Expectation Maximization
(EM) method because it works the same for both
PRLGs and HMMs (Hidden Markov Models)—a
model they compared results with.

These finite automata models both operate on

https://media.wizards.com/2020/downloads/MagicCompRules%2020201120.pdf
https://media.wizards.com/2020/downloads/MagicCompRules%2020201120.pdf
https://github.com/magarena/magarena/blob/master/grammar/mtg.peg
https://github.com/magarena/magarena/blob/master/grammar/mtg.peg

the same hidden states used for sequence chunking.
The states are: B (which specifies the beginning of
a chunk), I (which specifies an intermediate token
belonging to a chunk), O (a token not belonging
to a chunk), and STOP (a token used for punc-
tuation and sentence boundaries). The valid state
transitions are given in Figure 2. For our purposes a
chunk is defined as a B state followed by any num-
ber of I states. Because the algorithm is concerned
with finding chunks that have more than one token
in them there is no transition specified for B → B.

Figure 2: State transition diagram used in Ponvert et al.
(2011)

The cascading aspect of this algorithm can be
formulated as follows, using an example from our
data rephrasing the process given by Ponvert et al.
(2011) for clarity over brevity:

1. Start with raw tokenized text:

destroy target land or nonblack creature . it
ca n’t be regenerated .

2. Apply the model using the Viterbi algorithm:

(destroy target land or nonblack) creature . it
ca (n’t be) regenerated .

3. Replace chunks with pseudowords:

target creature . it ca be regenerated .

4. Cascade by repeating steps 1–4 on the new
sequence while chunks are still found in the
sequence:

(target creature) . (it regenerated) .

5. Unravel to create a parse tree:

This process can be described as applying the
chunking models in layers. After a given layer is
chunked, the chunk is replaced with a pseudoword.
Ponvert et al. (2011) found that using the token in
the chunk with the highest corpus frequency was
simple, but provided effective results. Additionally,
the chunkers used at each level were initialized
with the same parameters, tokens, and smoothing.

4 Data

We used data from four popular TCGs, namely:
MTG, Yu-Gi-Oh!, Hearthstone, and Keyforge. We
accessed the MTG data from MTGJSON3 v5.0.1,
an open source project that catalogues MTG cards.
MTG has a total of 21,328 cards. We obtained the
Yu-Gi-Oh! Data from YGOPRODeck v74 which
contains 10,998 cards. Hearthstone has 10,528
cards, and we used the Hearthstone JSON API v15

to obtain them. Keyforge has 258 cards, and we
accessed the data from a JSON repo on GitHub6.

We used a 60-20-20 split for each dataset. There-
fore the splits were as follows: MTG (12,792 train,
and 4,266 dev & test), Yu-Gi-Oh! (6,598 train,
2,200 dev & test), Hearthstone (6,316 train, 2,106
dev & test), and Keyforge (214 train, 72 dev & test).
During training the evaluation sets were kept blind
to the model.

5 Evaluation and Testing

Similar to Ponvert et al. (2011), we will base our
evaluation on identifying multi-word chunks of all
constituent types and test our model on the Penn

3https://mtgjson.com/
4https://db.ygoprodeck.com/api/v7/

cardinfo.php
5https://api.hearthstonejson.com/v1/

66927/enUS/cards.json
6https://github.com/keyforg/

keyforge-cards-json/blob/master/cards.
json

https://mtgjson.com/
https://db.ygoprodeck.com/api/v7/cardinfo.php
https://db.ygoprodeck.com/api/v7/cardinfo.php
https://api.hearthstonejson.com/v1/66927/enUS/cards.json
https://api.hearthstonejson.com/v1/66927/enUS/cards.json
https://github.com/keyforg/keyforge-cards-json/blob/master/cards.json
https://github.com/keyforg/keyforge-cards-json/blob/master/cards.json
https://github.com/keyforg/keyforge-cards-json/blob/master/cards.json

Treebank-3 dataset to ensure our model is correctly
implemented and follows the results from the pa-
per. Once we have verified this, we will evaluate
the results we get for the TCG datasets. We will
utilize PRLG, as our primary evaluation model and
compare it against an HMM model as a benchmark.
This will allow us to validate our results as infor-
mation is lost due to the independence assumption
characteristic of an HMM model. By comparing it
against PRLG we should expect PRLG to perform
better as referenced in Ponvert et al. Model perfor-
mance is reported on the results from computing
language model perplexity.

To compute sentence perplexity we first com-
puted the log marginal likelihood, P (w1, ...wn),
using the Baum-Welch forward algorithm in log-
space to account for underflow.

perplexity(w1, ...wn) = exp(−1
n
P (w1, ...wn))

To compute corpus perplexity, we compute the
log marginal likelihood of each sentence and propa-
gate the probabilities to compute corpus perplexity.
The probabilities of each sentence, si is summed
rather than multiplied because the probabilities are
computed in log-space.

P (s1, ..., sn) =
∑n

i=1 P (si)

P (si) is the log marginal likelihood of a sen-
tence, si
perplexity(corpus) = exp(−1

N P (s1, ..., sn))

6 Experimentation

Our experimentation lies primarily within our
model parameters. We tried a couple of differ-
ent variations to try to understand more about the
model. We were curious if the model could gener-
alize if we trained it on more than one TCG, so we
combined all the TCG datasets together as one op-
tion. Because it is common among TCGs to include
a card’s name within its rules-text, we created a pre-
processing option that replaces instances of a card’s
name with a predefined token labelled <this>, as
well as replacing numeric sequences with a <num-
ber>token. In turn we ran all models (including
the combined model) with and without the token
replacement parameter. This gave us a total of 10
models to train (MTG, Yu-Gi-Oh!, Hearthstone,
Keyforge, and the combined model, each with and
without the parameter set).

Parameters we could have experimented more
with but kept constant were: OOV (Out Of Vocab-
ulary) Threshold = 1, and we always converted the

text to lowercase before tokenizing. We chose to
run the models using PRLGs because Ponvert et al.
(2011) discovered it to have better results than the
HMM (but this could have been another parame-
ter). For the same reasons, we also opted to use the
STOP state for phrasal boundary tokens. We used:

. , ; ! ? ‘

7 Results and Analysis

We evaluated the performance of our model by
computing perplexity for all the TCG datasets as
shown in Figures 3 and 4. Results for the Penn
Treebank-3 dataset is shown in Figure 5.

As discussed in the Limitations of Work sec-
tion, we faced limitations when computing additive
smoothing for the probabilities. In order to account
for this and avoid overfitting we decided to set the
model to converge when the perplexity values be-
gan to increase in the test set.

Figure 3: TCG-Corpus Lang Model Perplexity with
Token Replacements.

Figure 4: TCG-Corpus Lang Model Perplexity

Figure 3 reports the results for the TCG datasets
where token replacements for <this>and <num-
ber>were replaced with instances of a card’s name
and numeric sequences. We expected this model to
perform better than the one reported in Figure 4 –

where there were no token replacements. For ex-
ample, the test set for the MTG datasets for the
model with token replacement, shown in Figure 3,
converged at 59.76. In Figure 4, for the model with
no token replacements converged at 82.07. Overall,
the results report that the perplexity values in the
model with token replacements are about 20 points
lower than the model with no token replacements.

Figure 5 reports HMM and PRLG language
model perplexity on the Penn Treebank-3 dataset.
As expected and as referenced in Ponvert et al.,
the PRLG should perform better than the HMM
model and our results show that the PRLG model
performs better than the HMM model.

Figure 5: Penn Treebank-3 Lang Model Perplexity
HMM & PRLG

The model with token replacement shows be-
haviour where it groups a verb followed by a
determiner as a constituent. This is seen in the
all replace dataset at epoch 8 and mtg replace
dataset at epoch 16. Below are examples of such
behaviours:

enters the battlefield sacrifice a permanent

discards a card
This is undesirable because it goes against lin-

guistic constituency structures. Although this could
be explainable due to the fact that TCG rules often
contain commands that start with verbs, a desirable
constituency structure would be:

enters the battlefield discards a card

Despite these linguistic inconsistencies, the
model reported better results according to the per-
plexity metric. We consider these results satisfac-
tory.

8 Limitations of Work

The findings of this project have to be seen in light
of some limitations. While completing our work,
we found that time was one of the more extreme
constraints. In the time we had left, we were unable
to compute 10-fold cross-validation as we origi-
nally planned. Due to this issue, we instead ran
our model without cross-validation, possibly giv-
ing us less accurate results. The second limitation
regards lambda smoothing. We ran into issues with
calculating it on probabilities and had to remove it
completely from our results. In doing so we believe
we are inhibiting our results slightly by declaring
convergence earlier due to overfitting that occurs in
later epochs. We also found, just as we assumed in
the planning of our project to be potential blocks,
that we could not calculate precision, recall, or F-
scores like the original paper had done because the
TCG dataset was unlabeled. This limits our find-
ings by restricting us to less informative evaluation
methods like perplexity. Also, while discussing
calculating values, we ran into the issue of which
data set to run the perplexity calculation on. The
original reference paper did not clearly report their
perplexity values or what data set they calculated
on, so we had to use our best judgment. Since we
decided to collect data from not only MTG cards
but also other card games like Hearthstone and
Keyforge, we speculated that the size of these two
card populations could prove to be an issue which
we found to be true as they had fewer cards avail-
able to use within our testing and the data ended
up converging on fewer iterations.

9 Future Work

Potential work that could be done in the short-term
includes addressing any of our limitations (espe-
cially the ones due to lack of time). Additionally,
more experimentation could be done to get a better
idea of which parameters have the most impact-
ful effect on the model. For example, we only
compared training the model on the raw tokens vs
ones with replaced <this>and <number>tokens–
but never experimented with only one or the other.
Further work should also go into determining why
the constituencies do not match linguistic NP VP
standards.

Longer-term work might include creating parse
trees of the TCG rules by-hand so that accuracy,
precision, recall, and F1 scores could be computed
using the PARSEVAL method (Black et al., 1991).

Further work could also be done to compare other
grammar induction techniques –perhaps state of
the art methods using Neural Networks like the
Compound PCFG model by Kim et al. (2019)–to
see if they have the same benefits on Controlled
Natural Language data like that of TCG rules-text.

10 Conclusion

This paper describes an approach to applying the
cascaded finite state grammar induction model by
Ponvert et al. (2011) to trading card game copra.
We have explored how existing efforts on Grammar
Induction perform better on CNL as found in TCGs.
Specifically, in this paper we found that the model
reported lower perplexity metrics than on the En-
glish Treebank-3 dataset (Marcus et al., 1999). We
found that a lower perplexity could be achieved by
using a simple preprocessing technique to replace
card names and numbers with special tokens. De-
spite the limitations of time and the compromise
we made for lack of lambda smoothing, our re-
sults match our expectations. Finally, we expect
these results would have similar trends using other
Grammar Induction techniques.

Acknowledgements Thanks to Dr. Ferraro for ac-
cess to the Treebank-3 dataset and his input on our
progress and hmm model implementation

References
E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-

ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of English grammars. In Speech and Natural
Language: Proceedings of a Workshop Held at Pa-
cific Grove, California, February 19-22, 1991.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3.

Stassa Patsantzis. 2015. Thelema – a theory learning
machine for grammar induction.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language
Technologies, pages 1077–1086, Portland, Oregon,
USA. Association for Computational Linguistics.

https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.35111/gq1x-j780
http://goblinopera.com/THELEMA/THELEMA_report.pdf
http://goblinopera.com/THELEMA/THELEMA_report.pdf
https://www.aclweb.org/anthology/P11-1108
https://www.aclweb.org/anthology/P11-1108

